Life cycle assessment

Carbon footprint of Polestar 3 model year 2025 Produced in Charleston, USA

Long range Dual motor Long range Single motor

This report is for information only and is based solely on an analysis of Polestar 3 (model year 2025 "Long range Dual motor" and "Long range Single motor". Full study methodology including (but not limited to) goal & scope, function & functional unit, allocation, assumptions and exclusions, data quality requirements and way of working is available in the previous Polestar 3 life cycle assessment report, available via this link: Polestar 3 LRDM MY24 LCA Report. To get a full understanding of the methodology used to calculate the carbon footprints in this report, it is recommended to read the previous report in conjunction with this one.

The result of this study is dependent upon agreed and validated information from Polestar suppliers and sub-suppliers. During the course of a vehicle program's life there could arise changes and non-compliances within the supply chain, should such changes or non-compliances arise, Polestar will take corrective actions to achieve the results presented in this report.

Life cycle assessment

5

Content

Disclaimer	3
List of abbreviation	7
Executive summary	9
Methodology	13
Introduction The products	17 17
Methodology and data Changes in methodology and data since Polestar 3 original carbon footprint study Methodology Scope of study Data Products Aluminium production and refining Steel production and refining Battery Electronics Manufacturing Logistics Use phase	19 19 19 19 19 21 21 23 23 23 23 25
LCIA Results Cradle-to-gate Cradle-to-grave Climate impact Climate impact from materials production and refining Climate impact of battery Climate impact of electronics Climate impact of steel production and refining Climate impact of use phase	27 27 31 33 37 39 39 39
Discussion	41
Appendix 1 - Chosen datasets	43

Appendix 1 - Chosen datasets

BEV: Battery Electric Vehicle

BOM: Bill of Materials

EoL: End-of-Life

GHG: Greenhouse Gas

GWP: Global Warming Potential

IEA: International Energy Agency

IMDS: International Material Data System

IPCC: Intergovernmental Panel on Climate Change

LCA: Life Cycle Assessment

LRDM: Long range Dual motor

LRSM: Long range Single motor

MY: Model Year

NMC: Nickel Manganese Cobalt

OEM: Original Equipment Manufacturer

PCB: Printed Circuit Board

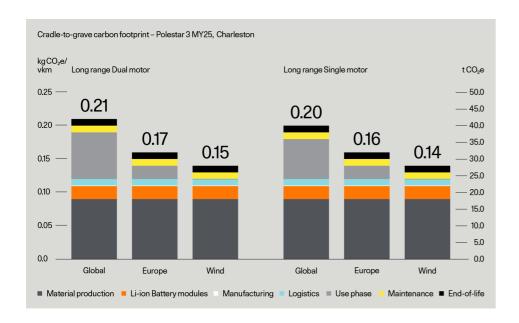
RER: Rest of Europe

STEPS: Stated Policies Scenario

tCO₂e: Metric ton carbon dioxide equivalents

VCC: Volvo Cars Corporation

WLTP: Worldwide Harmonised Light Vehicle Test Procedure


Life cycle assessment
Executive summary

Polestar is dedicated to ensuring transparency regarding the environmental impact of its vehicles. This investigation aims to enhance openness by disclosing the carbon footprint associated with our passenger vehicles. The audience includes customers, Polestar employees, investors, automotive OEMs, and other stakeholders with an interest in our vehicle's carbon footprint.

The conducted analysis is a Life Cycle Assessment (LCA) focused exclusively on greenhouse gas (GHG) emissions, commonly referred to as a carbon footprint analysis. This assessment analyses the global warming potential (GWP) in accordance with ISO 14067 guidelines, utilising characterisation factors established by the Intergovernmental Panel on Climate Change (IPCC, 2021). The scope of the study spans the entire life cycle of the vehicle, from the extraction and refinement of raw materials to the end-of-life stage.

This report shows the carbon footprint of Polestar 3 Long range Dual motor and Long range Single motor model year 2025, which went into manufacturing in Charleston, USA at the end of 2024. The study is a life cycle assessment (LCA), considering a driving distance of 200 000 kilometres and with a functional unit of "1 vehicle-kilometre". In general, this study adopts conservative assumptions to prevent underestimating the climate impact. There is currently no official standard for LCA of vehicles so the findings of this study should be approached with caution when making comparisons with those of other manufacturers. The study's objective is to comprehend the carbon footprint of the vehicle in its entire lifespan. The aim is to offer valuable insights that can help in making well-informed decisions, including identifying areas where vehicles can minimise their carbon footprint. From previous reports conducted by Polestar, aluminium production and battery module manufacturing have been pointed out as high contributing factors of emission in the vehicle's lifetime. Due to this, Polestar is actively working towards reducing these impacts.

In conclusion, the climate impact of the cradle-to-gate study reveals that 71-72%, depending on motor variant, is credited to the materials utilised in the vehicle's production, aluminium representing the largest part of these emissions followed by iron and steel. The production of battery modules emerges as a significant factor, constituting 19-20% of the cradle-to-gate climate impact. This battery has relatively low impact, this is mainly due to the use of 100% renewable electricity in the production of the anode and cathode active material, in battery cell and module production as well as the use of aluminium in the module casing from smelters utilising up to 100% renewable electricity

← Figure 1

Total carbon footprint cradle-to-grave for the different electricity mixes. The axis to the left presents the functional unit of $1\,\text{km}$ and the result in kg CO $_2\text{e}$ and the axis to the right presents the result in tCO $_2\text{e}$ per vehicle lifetime of 200 000km.

Using the functional unit "per vehicle kilometre" the cradle-to-grave carbon footprint varies between 0.21 and 0.15 kg CO $_2\mathrm{e}$ per vkm driven for the "Long range Dual motor" and the result for the "Long range Single motor" varies between 0.20 and 0.14 kg CO $_2\mathrm{e}$ per vkm (assuming a total lifetime driving distance of 200 000 km). Using the secondary functional unit "lifetime of 1 vehicle" the cradle-to-grave carbon footprint is 42.8-29.2 tCO $_2\mathrm{e}$ for the "Long range Dual motor" and 40.3-28.1 tCO $_2\mathrm{e}$ for "Long range Single motor". The range in results is caused by differences in electricity mix scenarios, where the highest value reflects that a global electricity mix is used in the vehicle use phase while the lowest value reflects that electricity from wind power is used. Thereby it is apparent that the driver of the vehicle can have a significant impact in lowering the carbon footprint by charging with renewable electricity, such as wind power. See Figure 1 for visualisation of the results.

11

Life cycle assessment
_

Input/output	Polestar3
Vehicle:	Polestar 3 MY25
Assessed variants:	Polestar 3 LRDM & Polestar 3 LRSM
Model years assessed:	MY25
Equipment level assessed:	Expected highest selling equipment level
Assessed manufacturing sites:	Volvo cars manufacturing site in Charleston, USA
LCA standard:	ISO 14067
Cut-off:	No cut-off criteria applied for product mass or energy use Simple cut-off approach for recycled content
Functional units:	"1 vkm" and "lifetime of 1 vehicle"
Analysis period:	200 000km over 15 years
Use phase el. consumption method:	WLTP
WLTP driving range:	636 km (LRDM), 706 km (LRSM)
Battery cathode chemistry:	NMC
Battery capacity:	111 kWh
Life cycle scope:	Cradle-to-gate & cradle-to-grave
Included life cycle stages:	Raw material extraction and processing Refining of raw materials into parts bought by Volvo Cars Inbound logistics Manufacturing in Volvo Cars plant in Charleston, USA Outbound logistics Electricity consumption in use phase Vehicle maintenance in use phase End-of-life treatment of the vehicle
Full LCA methodology and explanations available at:	Polestar 3 LRDM MY24 LCA Report

← Table

12

Overview of the methodological choices for the LCA of the Polestar 3.

Summary of methodology

This table outlines an overview of the methodological choices for the LCA of the Polestar 3. The full methodology is available via the following link: Polestar 3 LRDM MY24 LCA Report.

Life cycle assessment Author and contact

Authors

Emil Inberg Environmental Sustainability Specialist, Polestar

Contacts

Emil Inberg Environmental Sustainability Specialist, Polestar emil.inberg@polestar.com

Alexandra Odbjer Manager Sustainability, Polestar <u>alexandra.odbjer@polestar.com</u>

■ Aluminium ■ Polymers ■ Electronics ■ Fluids and undefined

18% / Polymers

Natural Materials

■ Steel and Iron

Tyres

Life cycle assessment
Introduction

← Figure 2

16

Other Metals

Copper

Shares of material categories of vehicle weight without battery. Note: the material composition of both the Long range Dual motor variant and the Long range Single motor is very similar, to the degree that rounding to whole percentage points show no difference between the variants in this illustration.

Table1 →

Studied vehicles.

The products

Polestar only develops battery electric vehicles; the Polestar 2, Polestar 3 and Polestar 4. The study assesses two variants of Polestar 3 model year 2025, the Long range Dual motor variant and the Long range Single motor variant. These variants are produced both in Volvo Cars facilities in Chengdu, China and in Charleston, USA. This study assesses vehicles produced in Charleston, USA during 2025. The variants are produced with different specifications. This study encompasses the specifications expected to have the largest sales volumes. The products studied are presented in Table 1. Figure 2 shows the material composition by weight for the two Polestar 3 variants.

17

Polestar 3 MY25	Long range Dual motor	Long range Single motor
Total weight vehicle (kg)	2 579	2 403
Li-ion battery modules type and capacity (kWh)	NMC, 111 kWh	NMC, 111 kWh
Weight of battery modules (kg)	474	474
Energy usage WLTP (kWh/100 km)	19.6 - 21.8	17.6 - 20.3
Preliminary range (WLTP)	636 km	706 km

Changes in methodology and data since Polestar 3 original carbon footprint study

The previously published Polestar 3 LCA report describes and motivates the way of working to obtain data, data sources, LCA databases and software, relation to standards, system boundaries, allocation methods, assumptions, and limitations. The original report also describes material categories, manufacturing methods, transport, use phase, maintenance, and end-of-life treatment. The original Polestar 3 LCA report can be accessed through this Link. this chapter only describes the changes made in either methodology or data, from the previous Polestar 3 LCA. All other methodology are the same as in the previous Polestar 3 LCA and are described in that report.

19

Methodology

There have been no larger changes in the overall methodology from the previous Polestar 3 LCA report, smaller changes have been made which are listed in the subsequent sections. The methodology can be accessed in full here.

Scope of study

The scope of the study remains largely unchanged from the first Polestar 3 LCA report, the largest change is the geographical boundary which have been changed to vehicle manufacturing in the USA.

For upstream processes, i.e. before the vehicle manufacturing, generic datasets for raw material production and refining in a specific country or region have been used when it is known or likely that production/refining takes place there, if available. This is one step towards better data quality compared to the previous carbon footprint study on Polestar 2 which used global datasets for upstream processes as a first option. The methodology for choosing generic data is further described in the Polestar 2 carbon footprint report "Appendix 1: General methodology when choosing datasets for complete vehicle carbon footprints".

Data

There have been changes made concerning the data related to aluminium in this report as well as changes to the overall weight of the Polestar 3 Long range Dual motor, which is described below. Data concerning the battery has also changed, since the battery supplier has made updates to its sourcing processes. Another change in data concerns the use phase assumptions based on the International Energy Agencies (IEA) Stated Policies Scenario (STEPS). Since the time of publishing the previous Polestar 3 LCA report, IEA has released new datasets on how they predict the world's energy mixes to evolve.

Products

The second model year of Polestar 3, MY25, brought the Long range Single motor variant. This variant has one less motor, leading to a lower overall vehicle weight compared to the dual motor variant. This difference has implications on the use phase since the electricity consumption is lower with one motor, also increasing the range of the vehicle since the battery is the same for both variants. The MY25 Long range Dual motor variant remains largely unchanged from MY24 although the identified overall weight of the Polestar 3 Long range Dual motor decreased slightly, which is accounted for in this report, the weight reduction is identified to be 6 kg.

IS

Aluminium from different sources by share of total aluminium weight.

Table 2 →

Aluminium production and refining

Opposed to the previous Polestar 3 LCA, aluminium parts for which the origin of raw material is unknown it has been assumed that this aluminium has a carbon footprint of global average, which is based on an expert judgement by Polestar logistics specialists. The aluminium used in some identified parts in the vehicles comes from smelters utilising renewable electricity for smelting, the emission factors used for some of these parts are primary data from parts suppliers. Other parts have been modelled with a fossil emission factor representing hydropower aluminium smelting in China based on supplier information.

Aluminium parts which have a share of recycled aluminium have been identified. The recycled content includes both post-consumer material and post-industrial material in accordance with the definition of recycled content in ISO 14021 "Environmental Labels and Declarations".

The share of aluminium produced using recycled aluminium has been modelled using a partly aggregated dataset (open energy inputs). The Sphera dataset "RNA: Secondary aluminium ingot (95% recycled content)" is used as the raw material for the recycled content modelling. These changes concerning aluminium have an implication on the total carbon footprint of the Polestar 3. The shares of aluminium sources are given in Table 2.

Polestar 3 MY25	Long range Dual motor	Long range Single motor
Aluminium from smelters using renewable electricity	18%	19%
Recycled aluminium	15%	11%
Standard Chinese aluminium	4%	5%
Aluminium, global average	63%	66%

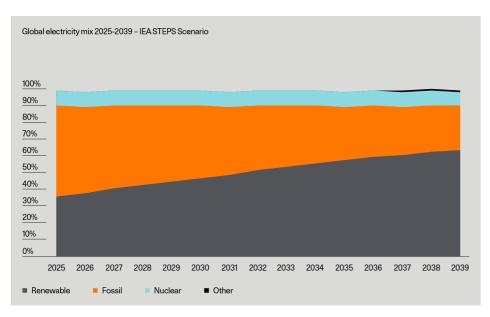
Steel production and refining

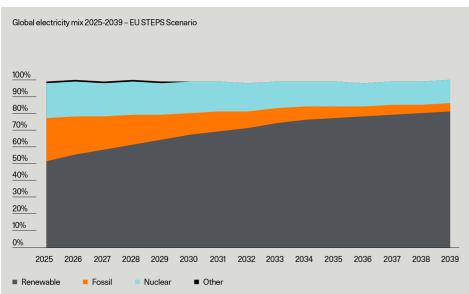
The raw material used for unalloyed steel is modelled as cold rolled and hot dip galvanised steel. This is divided into two main flows which are (i) steel sourced directly by Volvo Cars to the assembly plant in Charleston, USA and (ii) steel sourced and processed by suppliers to Volvo Cars. The modelling of steel sourced by Volvo Cars applies a material utilisation degree based on Volvo Cars internal data. The material utilisation degree of the insourced steel is confidential information. Modelling of steel sourced and processed by suppliers applies a material utilisation degree of 63%, as described in the previous Polestar 3 LCA report. Approximately 50% of steel raw material in the finished Polestar 3 vehicle is sourced by Volvo Cars of which 70% is produced in the USA and 30% is produced in Europe. The total recycled content of the steel sourced by Volvo Cars to the Polestar 3 is approximately 27%.

Battery

For model year 2025 further improvements of the battery have been made. The battery supplier has incorporated the use of aluminium from smelters using hydroelectricity for the aluminium content of the battery modules. Previous improvements concerning renewable electricity in cathode and anode active material production as well as in battery cell production are still in effect. This has resulted in a lower carbon footprint of the battery modules in the Polestar 3, for both the Long range Dual motor and the Long range Single motor variant, as they use identical battery modules. The results for the battery climate impact were provided by the supplier in an LCA report made according to Polestar and Volvo Cars guidelines and in line with ISO 14044. The scope includes analysing processes from raw material extraction to the finalised product at the battery company gate. The impact categories focus on GWP over 100 years. Evaluation was based on two functional units: "kWh capacity of battery cells", and "kWh capacity of battery modules". Primary data has been collected by the battery manufacturer from manufacturing plants and contracted suppliers as well as data on specific energy sources. Electricity is primarily sourced via power purchase agreements from hydroelectric powerplants, and thermal power is generated from natural gas. Generic data was based on attributional modelling and represent the process's geographical region and extracted from LCI databases like Ecoinvent and Sphera (GaBi professional).

Electronics


Data on the total weight of electronics have been updated in this report due to the use of a new bill of materials for the model year 2025 of Polestar 3. The new bill of materials identifies a lower total weight of electronics in the Long range Dual motor variant compared to model year 2024. As in the previous LCA study, all materials that are used in electronic devices that are not PCBs have been sorted into other categories, such as copper or different types of polymers. For the category "electronics" a generic data set from Ecoinvent 3.9.1 has been used. This dataset represents the production of lead-free, mounted PCBs.


Manufacturing

Representative figures for energy consumption in the Charleston factory are not available at the time of writing this study. Therefore, the consumption of electricity and natural gas per produced vehicle from the Chengdu factory (also producing Polestar 3) for the year 2024 is used to estimate the GHG emissions related to manufacturing. The figures on consumption from Chengdu are increased by 20% to limit the risk of underestimation. Expected electricity sources are 90% hydro power and 10% solar power from on-site solar installations. Country specific datasets for hydropower, solar power and natural gas are applied to the energy consumption figures.

Logistics

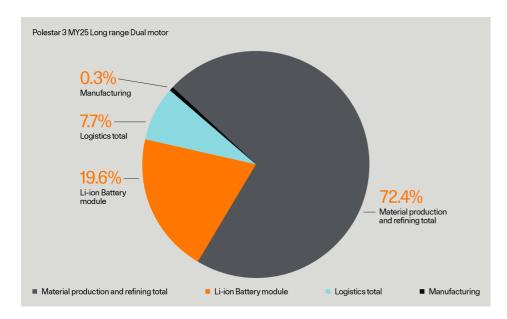
Since Polestar 3 is produced in Volvo Car plants, Volvo Cars has provided GHG emissions data for transports from tier 1 suppliers to the manufacturing site in Charleston, USA (inbound transport) as well as GHG emissions data for transports from the manufacturing site to customer handover (outbound transport). The outbound transport calculation is based on distances to the markets which will be receiving Polestar 3 vehicles produced in Charleston, USA. The methodology to calculate emissions is developed in line with the ISO 14083 standard.

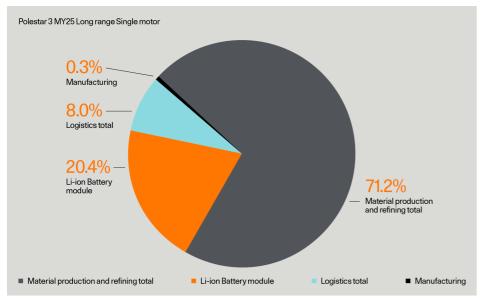
← Figure 3

Predicted share of energy production sectors in the Stated Policies Scenario (STEPS) for global electricity mix, year 2025 to 2039.

Use phase

Data updates have been made concerning the use phase of the Polestar 3. The most recent data on how the electricity mix might evolve in the EU and Globally have been acquired from the IEAs World Energy Outlook 2024 Extended Dataset². The used electricity mix scenario is their STEPS scenario, which is their more conservative scenario, under which global warming would rise to $2.4^{\circ}\mathrm{C}$ by 2050³. STEPS reflects current policy settings based on a sector-by-sector and country-by-country assessment of the specific policies that are in place, as well as those that have been announced by governments around the world. Figures 3 and 4 visually represent the development of electricity sources. It is evident that the production of electricity from fossil sources is expected to diminish, gradually being replaced by renewable sources based on the IEA STEPS data.


25


As in the previous report, the analysis assumes that 50% of a vehicle's total lifetime mileage is covered in the initial five years, equivalent to $20\,000$ kilometres per year, while 30% is driven in the subsequent five years, amounting to $12\,000$ kilometres annually. During the last five years of the vehicle's life, it is assumed that the yearly distance driven is $8\,000$ km, amounting to the total $200\,000$ kilometres over a 15-year period. This assumption makes the analysis less reliant on future electricity mixes resulting in a more conservative calculation.

← Figure 4

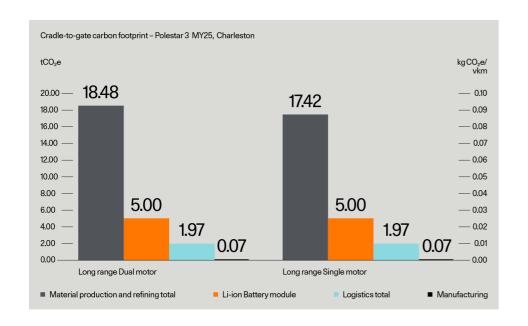
Predicted share of energy production sectors in the Stated Policies Scenario (STEPS) for EU electricity mix, year 2025 to 2039.

- 2 World Energy Outlook 2024 Free Dataset - Data product - IEA
- 3 Executive summary World Energy
 Outlook 2024

← Figure 5

Share of cradle-to-gate emissions for one Polestar 3 Long range Dual motor.

The subsequent section shows the findings of the study. It will start by showing cradle-to-gate results followed by results for cradle-to-grave. No updated sensitivity analysis for the cradle-to-grave result has been made in this report as the result is very similar and will vary in a similar manner. See Section 3.3 in the original report: Polestar 3 LRDM MY24 LCA Report.


Cradle-to-gate

LCIA Results

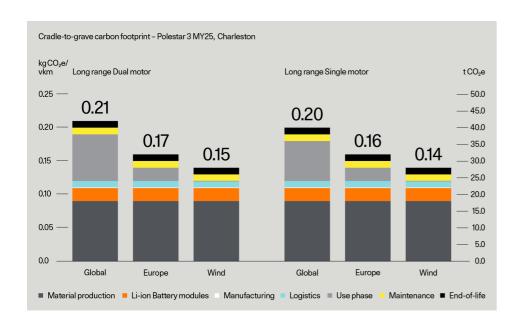
The results showcased in Figures 5 and 6 display the different life cycle stages shares of the total carbon footprint from cradle-to-gate concerning the production of one Polestar 3 Long range Dual motor and one Polestar 3 Long range Single motor. The largest contributor to the climate impact stems from the materials utilised in the vehicle's production, constituting 71-72% of the total climate impact. Subsequently, the battery modules contribute significantly, accounting for 19-20% of the cradle-to-gate climate impact, while only a minor 7-8% of the total footprint is associated with logistics and 0.3% associated with manufacturing processes in Volvo Cars plant in Chengdu, China.

← Figure 6

Share of cradle-to-gate emissions for one Polestar 3 Long range Single motor.

← Figure 7

Cradle-to-gate carbon footprint for the Polestar 3 MY25 variants, including Materials production and refining, Li-ion battery modules, Manufacturing and Logistics. Results are shown in tCO $_2$ e per functional unit (200,000 km lifetime range) and kg CO $_2$ e/vkm.


Table 3 →

Cradle-to-gate total climate impact in

tCO₂e for the life cycle of the vehicle.

Table 3 presents the comprehensive climate impact in tCO_2 e throughout the cradle-to-gate life cycle of the two variants of the vehicle. The total cradle-to-gate climate impact accounts for 25.52 tCO_2 e for the Long range Dual motor variant and 24.46 tCO_2 e for the Long range Single motor variant. Material production and refining is the category with the largest carbon footprint impact. See visualisation of results in Figure 7.

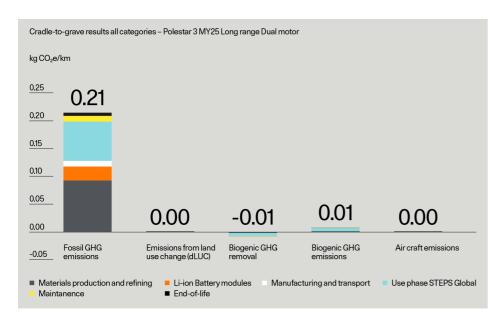
Polestar 3 MY25, tCO ₂ e	Long range Dual motor	Long range Single motor
Materials production and refining	18.48	17.42
Li-ion battery modules	5.0	5.0
Logistics	1.97	1.97
Manufacturing	0.07	0.07
Total, Cradle-to-gate	25.52	24.46

← Figure 8

Cradle-to-grave carbon footprint for Polestar 3 MY25 variants, with different electricity mixes in the use phase. The use-phase utilises the STEPS scenario from the IEA. Results are shown in tCO₂e per functional unit (200,000 km lifetime range) and kg CO₂e/ykm.

Table 4 →

Cradle-to-grave carbon footprint for Polestar 3 MY25 variants, with different electricity mixes used in the use phase. Results are shown in g CO₂e per functional unit (200,000 km lifetime range).


Cradle-to-grave

The results of the comprehensive LCA for the vehicles, considering three distinct electricity mixes, are presented in Figure 8 as well as Tables 4 and 5 for the cradle-to-grave study. Depending on the electricity mixes in the use phase, the climate impacts differ.

The life cycle stages with the most significant climate impact on the global electricity mix are materials production and refining, use phase and production of Li-ion battery modules.

During the use phase, large variations are observed based on the electricity sources used for charging the vehicle. Wind power electricity exhibits the least climate impact during the use phase, followed by the average EU electricity mix.

Polestar 3 MY25	Long rai	nge Dual m Europe	otor Wind	Long rar Global	nge Single Europe	motor Wind
Material production	92.39	92.39	92.39	87.11	87.11	87.11
Li-on battery modules	24.98	24.98	24.98	24.98	24.98	24.98
Manufacturing	0.37	0.37	0.37	0.37	0.37	0.37
Logistics	9.84	9.84	9.84	9.84	9.84	9.84
Use phase	70.61	21.99	2.53	63.40	19.75	2.27
Maintenance	10.28	10.28	10.28	10.28	10.28	10.28
End-of-life	5.71	5.71	5.71	5.49	5.49	5.49
Total, cradle-to-grave	214.18	165.56	146.10	201.47	157.82	140.34

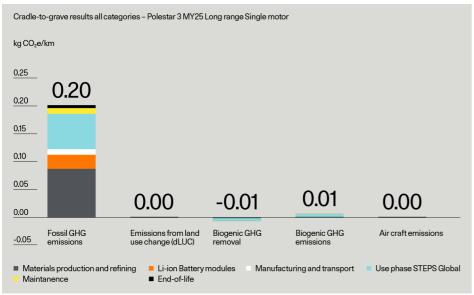


Table 5 →

Cradle-to-grave carbon footprint for Polestar 3 MY25 variants, with different electricity mixes used in the use phase. Results are shown in tCO_2e per functional unit (200,000 km lifetime range).

← Figure 9

Results cradle-to-grave for the Long range Dual motor variant according to functional unit 1 vkm for the five climate impacts categories according to ISO 14067 with global energy mix in kg CO_e/vkm.

Polestar 3 MY25	Long rai Global	nge Dual m Europe	otor Wind	Long rai	nge Single Europe	motor Wind
Material production	18.48	18.48	18.48	17.42	17.42	17.42
Li-on battery modules	5.00	5.00	5.00	5.00	5.00	5.00
Manufacturing	0.07	0.07	0.07	0.07	0.07	0.07
Logistics	1.97	1.97	1.97	1.97	1.97	1.97
Use phase	14.12	4.40	0.51	12.68	3.95	0.45
Maintenance	2.06	2.06	2.06	2.06	2.06	2.06
End-of-life	1.14	1.14	1.14	1.10	1.10	1.10
Total, cradle-to-grave	42.84	33.11	29.22	40.29	31.56	28.07

Climate impact

According to ISO 14067, this study includes the five different climate impact categories: fossil GHG emissions, emissions from land use change, biogenic GHG emissions and removal, and aircraft emissions.

The five climate change impact categories are shown in Figures 9 and 10. Fossil GHG emissions account for the largest portion of the total climate impact, with 96.7% of total GHG emissions followed by biogenic carbon emissions of 3.3% for both Polestar 3 variants. Land use change emissions together with aircraft emissions are reported negligible in contrast to the other emissions. Biogenic carbon removal is equal in magnitude to biogenic emissions.

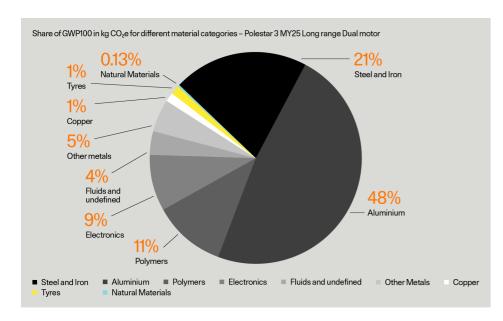
← Figure 10

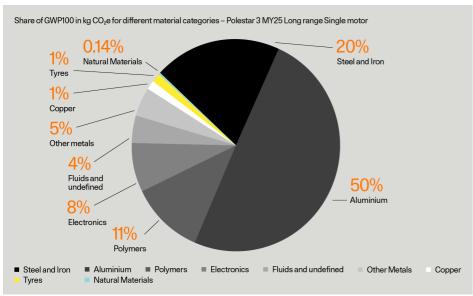
Results cradle-to-grave for the Long range Single motor variant according to functional unit 1 km for the five climate impacts categories according to 100 14067 with global energy mix in kg CO_2e /vkm.

Polestar 3 MY25 Long range Dual motor	Fossil GHG emissions g CO ₂ e/vkm.	Emissions from land use change (dLUC) g CO ₂ e/vkm.	Biogenic GHG removal g CO ₂ e/vkm.	Biogenic GHG emissions g CO ₂ e/vkm.	Aircraft emissions g CO₂e/vkm.
Materials production and refining	92.54	0.06	-1.54	1.33	0.00
Li-ion battery modules	24.98	-	-	-	-
Manufacturing and Transport	10.22	-	-	-	-
Use phase STEPS Global	70.57	0.01	-5.53	5.56	0.00
Use phase STEPS EU	21.92	0.01	-12.08	12.14	0.00
Use phase Wind	2.52	0.00	-0.17	0.18	0.00
Maintenance	10.28	0.00	-0.33	0.37	0.00
End-of-Life	5.71	0.00	-0.07	0.07	0.00

Polestar 3 MY25 Long range Single motor	Fossil GHG emissions g CO ₂ e/vkm.	Emissions from land use change (dLUC) g CO ₂ e/vkm.	Biogenic GHG removal g CO ₂ e/vkm.	Biogenic GHG emissions g CO ₂ e/vkm.	Aircraft emissions g CO ₂ e/vkm.
Materials production and refining	87.24	0.05	-1.39	1.50	0.00
Li-ion battery modules	24.98	-	-	-	-
Manufacturing and transport	10.22	-	-	-	-
Use phase STEPS Global	63.37	0.01	-4.97	5.00	0.00
Use phase STEPS EU	19.68	0.01	-10.85	10.91	0.00
Use phase Wind	2.27	0.00	-0.16	0.16	0.00
Maintenance	10.28	0.00	-0.33	0.37	0.00
End-of-Life	5.22	0.00	-0.04	0.06	0.00

← Table 6


Results for the Long range Dual motor variant according to functional unit 1vkm for the five climate impacts categories according to ISO 14067 with different electricity mixes according to STEPS in g CO₂e/vkm.


These percentages are based on the global energy mix, due to that mix being the most conservative for GWP. The three electricity scenarios are presented fully in Tables 6 and 7 for the dual motor and single motor variants respectively.

35

← Table 7

Results for the Long range Single motor variant according to functional unit 1 vkm for the five climate impacts categories according to ISO 14067 with different electricity mixes according to STEPS in g CO₂e/vkm.

← Figure 11

Share of GWP 100 from material production and refining results per material category for the Long range Dual motor variant for different materials categories, excluding battery modules.

Table 8 →

GWP 100 results in tCO₂e. for different materials categories, excluding battery modules for the two Polestar 3 variants.

← Figure 12

Share of GWP 100 from material production and refining results per material category for the Long range Single motor variant for different materials categories, excluding battery modules.

Climate impact from materials production and refining

The primary contributors to GHG emissions from materials production (excluding battery) are aluminium, accounting for 48-50% of the total climate impact, followed by steel and iron at 20-21% depending on variant. Additionally, the climate impact from polymers account for 11% and electronics is at 8-9%, depending on variant. Other categories such as fluids, copper, other metals, and tyres also contribute to the overall emissions but to a lesser degree. Figures 11 and 12 display the shares of the total carbon footprint from materials, excluding battery modules, attributed to the different material categories. Table 8 provides the same information in numerical terms. Additionally, the climate impact from polymers account for 11% and electronics is at 8-9%, depending on variant

Polestar 3 MY25	Long range Dual motor tCO₂e	Long range Single motor tCO₂e
Steel and Iron	3.82	3.46
Aluminium	8.86	8.69
Polymers	2.06	1.94
Electronics	1.58	1.35
Fluids and Undefined	0.71	0.69
Other Metals	0.88	0.78
Copper	0.28	0.23
Tyres	0.26	0.26
Natural Materials	0.02	0.03

Climate impact of battery

For model year 2025 improvements of the battery have been made. The battery supplier has incorporated the use of aluminium sourced from smelters using hydroelectricity for the aluminium content of the battery modules. This has resulted in a lower carbon footprint of the battery modules in the Polestar 3. The results of the carbon footprint report from the supplier reveal that the primary sources of greenhouse gas emissions are the anode and cathode of the cell, along with the aluminium casing despite the use of less carbon intensive aluminium. Additionally, thermal energy from natural gas plays a significant role as a major contributor in the production process. The improvements made on the battery modules have resulted in a battery carbon footprint reduction of approximately $0.9\,\mathrm{tCO_2e}$ compared to Polestar 3 model year 2024.

Climate impact of electronics

The climate impact of electronics is lower in the Polestar 3 Long range Dual motor model year 2025 compared to model year 2024. This is due to the lower identified total weight of electronics which results in a carbon footprint reduction from electronics of approximately 0.5 tCO $_{\rm 2}e$. Electronics have a very high emission factor per kg leading to quite small differences in weight having a large impact on the carbon footprint of the material category. For future studies, Polestar intends to research electronics further to improve the accuracy of the impact assessment.

Climate impact of steel production and refining

The climate impact from the steel in the Polestar 3 Long range Dual motor is lower in vehicles produced in Charleston, USA compared to the vehicles produced in Chengdu, China. This is primarily due to the higher content of recycled steel in steel products sourced from the US. In the US, compared to China and Europe, there is a higher concentration of steel mills utilising electric arc furnaces, a technology that allows higher shares of steel scrap in smelting. This leads to a lower carbon footprint of steel sourced from the US compared to sourcing steel from Europe and China⁴.

Climate impact of use phase

The climate impact of the use phase of the Polestar 3 Long range Dual motor model year 2025 has decreased compared to the impact from the previous model year. This is partly due to (i) the energy consumption per km is lower and primarily (ii) due to that the 2024 IEA STEPS scenario by the IEA anticipates an increase in the share of renewable electricity across the world compared to the 2022 IEA STEPS scenario used in the previous Polestar 3 LCA study. For comparison, the 2022 data anticipated approximately 70% renewables in the EU electricity mix by 2038 while the 2024 data estimate approximately 80% by 2038.

Overall, the cradle-to-gate carbon footprint of model year 2025 Polestar 3 LRDM produced in Charleston is higher than the 2024 model year Polestar 3 LRDM produced in Chengdu, China. This is primarily due to the decreased number of aluminium parts made of aluminium from smelters using renewable electricity. The total cradle-to-gate difference amounts to approximately 0.8 tCO₂e. The difference would have been higher were it not for the improvements in the battery modules and the increased use of recycled steel.

The cradle-to-grave carbon footprint remains largely unchanged compared to the Polestar 3 produced in Chengdu, China even though the cradle-to-gate carbon footprint has increased. This is primarily due to the use of updated datasets from the IEA STEPS scenario used in the use phase of the vehicles, but also (less significant) thanks to the improved energy efficiency of the vehicle. These factors contribute to the lower carbon footprint in the use phase compared to the previous Polestar 3 LCA study on the LRDM variant.

Appendix 1 - Chosen datasets

Material category Use phase	Location	Name of LCI dataset	Year	Туре	LCI database
Electricity from solar power	RER	Electricity from photovoltaic	2019	agg	Sphera professsional database
Electricity from wind power	RER	Electricity from wind power	2019	agg	Sphera professsional database
Electricity from geothermal	RER	Electricity from geothermal	2019	agg	Sphera professsional database
Electricity from hydro power	RER	Electricity from hydro power	2019	agg	Sphera professsional database
Electricity from bioenergy	RER	Electricity from biomass (solid)	2019	agg	Sphera professsional database
Electricity from nuclear power	RER	Electricity from nuclear	2019	agg	Sphera professsional database
Electricity from unabated coal	RER	Electricity from lignite	2019	agg	Sphera professsional database
Electricity from unabated gas	RER	Electricity from natural gas	2019	agg	Sphera professsional database
Electricity from oil	RER	Electricity from heavy fuel oil (HFO)		agg	Sphera professsional database

Material category Material production and refining	Location	Name of LCI dataset	Year	Туре	LCI database
Aluminium	GLO	Aluminium ingot mix IAI	2019	agg	IAI / Sphera professional database
Aluminium	CN	Aluminium ingot mix IAI	2019	agg	IAI / Sphera professional database
Aluminium	RER	Aluminium ingot mix	2023	agg	Sphera professional database
Aluminium, recycled	RER	Treatment of aluminium scrap, post-consumer, prepared for recycling, at remelter	2022	agg	ecoinvent 3.9.1
Steel, unalloyed	GLO	Steel hot dip galvanised	2022	agg	Worldsteel / Sphera professional database
Steel, unalloyed	US/RER	Steel sourced by VCC, Primary data from steel suppliers	2019- 2024	agg	N/A
Steel, sintered	GLO	Steel hot dip galvanised worldsteel	2022	agg	Worldsteel / Sphera professional database

← Table 9

Chosen data sets for electricity for use phase.

In the LCA a large number of generic datasets from databases are used. In this appendix the datasets used are listed in Tables 9-11. This appendix only presents changes to the datasets used from the previous LCA study on Polestar 3. The original Polestar3 LCA contains all other datasets used.

Material category Manufacturing	Location	Name of LCI dataset	Year	Туре	LCI database
Electricity	US	Electricity from photovoltaic	2019	agg	Sphera professional database
Electricity	US	Electricity from hydro power	2019	agg	Sphera professional database
Thermal energy	US	Thermal energy from natural gas (East)	2019	agg	Sphera professional database

↑ Table 11

Chosen data sets for energy and electricity for manufacturing.

← Table 10

Chosen data sets for updates on Material production and refining.